申请专栏作者
您的当前位置:主页 > 数据挖掘 > 正文

为什么说 Storm 比 Hadoop 快?

来源: 时间:2018-10-10
请点击下面的广告后浏览!
36大数据

 

可思数据-AI,智能驾驶,人脸识别,区块链,大数据

“快”这个词是不明确的,专业属于点有两个层面: 可思数据

1.时延 , 指数据从产生到运算产生结果的时间,题主的“快”应该主要指这个。 本文来自可思数据,转载请联系本站及注明出处

2. 吞吐, 指系统单位时间处理的数据量。

可思数据-AI,智能驾驶,人脸识别,区块链,大数据

首先明确一点,在消耗资源相同的情况下,一般来说storm的延时低于mapreduce。但是吞吐也低于mapreduce。 可思数据-AI,人工智能,深度学习,机器学习,神经网络

storm的网络直传、内存计算,其时延必然比hadoop的通过hdfs传输低得多;当计算模型比较适合流式时,storm的流式处理,省去了批处理的收集数据的时间;因为storm是服务型的作业,也省去了作业调度的时延。所以从时延上来看,storm要快于hadoop。 可思数据-AI,智能驾驶,人脸识别,区块链,大数据

说一个典型的场景,几千个日志生产方产生日志文件,需要进行一些ETL操作存入一个数据库。

可思数据-数据挖掘,智慧医疗,机器视觉,机器人

假设利用hadoop,则需要先存入hdfs,按每一分钟切一个文件的粒度来算(这个粒度已经极端的细了,再小的话hdfs上会一堆小文件),hadoop开始计算时,1分钟已经过去了,然后再开始调度任务又花了一分钟,然后作业运行起来,假设机器特别多,几钞钟就算完了,然后写数据库假设也花了很少的时间,这样,从数据产生到最后可以使用已经过去了至少两分多钟。

可思数据-www.sykv.cn,sykv.com

而流式计算则是数据产生时,则有一个程序去一直监控日志的产生,产生一行就通过一个传输系统发给流式计算系统,然后流式计算系统直接处理,处理完之后直接写入数据库,每条数据从产生到写入数据库,在资源充足时可以在毫秒级别完成。 可思数据-AI,人工智能,深度学习,机器学习,神经网络

当然,跑一个大文件的wordcount,本来就是一个批处理计算的模型,你非要把它放到storm上进行流式的处理,然后又非要让等所有已有数据处理完才让storm输出结果,这时候,你再把它和hadoop比较快慢,这时,其实比较的不是时延,而是比较的吞吐了。

可思数据-AI,人工智能,深度学习,机器学习,神经网络

storm是典型的流计算系统,mapreduce是典型的批处理系统。下面对流计算和批处理系统流程。

可思数据-数据挖掘,智慧医疗,机器视觉,机器人

整个数据处理流程来说大致可以分三个阶段: 可思数据-AI,智能驾驶,人脸识别,区块链,大数据

1. 数据采集与准备

可思数据

2. 数据计算(涉及计算中的中间存储), 题主中的“那些方面决定”应该主要是指这个阶段处理方式。 可思数据-数据挖掘,智慧医疗,机器视觉,机器人

3. 数据结果展现(反馈) 可思数据

1)数据采集阶段,目前典型的处理处理策略:数据的产生系统一般出自页面打点和解析DB的log,流计算将数据采集中消息队列(比如kafaka,metaQ,timetunle)等。批处理系统一般将数据采集进分布式文件系统(比如HDFS),当然也有使用消息队列的。我们暂且把消息队列和文件系统称为预处理存储。二者在延时和吞吐上没太大区别,接下来从这个预处理存储进入到数据计算阶段有很大的区别,流计算一般在实时的读取消息队列进入流计算系统(storm)的数据进行运算,批处理一系统一般会攒一大批后批量导入到计算系统(hadoop),这里就有了时延的区别。

可思数据-www.sykv.cn,sykv.com

2)数据计算阶段,流计算系统(storm)的时延低主要有一下几个方面 可思数据-AI,智能驾驶,人脸识别,区块链,大数据

A: storm 进程是常驻的,有数据就可以进行实时的处理

可思数据

mapreduce 数据攒一批后由作业管理系统启动任务,Jobtracker计算任务分配,tasktacker启动相关的运算进程

可思数据-AI,智能驾驶,人脸识别,区块链,大数据

B: stom每个计算单元之间数据之间通过网络(zeromq)直接传输。 可思数据-数据挖掘,智慧医疗,机器视觉,机器人

mapreduce map任务运算的结果要写入到HDFS,在于reduce任务通过网络拖过去运算。相对来说多了磁盘读写,比较慢 本文来自可思数据,转载请联系本站及注明出处

C: 对于复杂运算

可思数据

storm的运算模型直接支持DAG(有向无环图)

可思数据-AI,人工智能,深度学习,机器学习,神经网络

mapreduce 需要肯多个MR过程组成,有些map操作没有意义的 可思数据-数据挖掘,智慧医疗,机器视觉,机器人

3)数据结果展现 可思数据-www.sykv.cn,sykv.com

流计算一般运算结果直接反馈到最终结果集中(展示页面,数据库,搜索引擎的索引)。而mapreduce一般需要整个运算结束后将结果批量导入到结果集中。

可思数据

实际流计算和批处理系统没有本质的区别,像storm的trident也有批概念,而mapreduce可以将每次运算的数据集缩小(比如几分钟启动一次),facebook的puma就是基于hadoop做的流计算系统。

可思数据-AI,人工智能,深度学习,机器学习,神经网络

文 | 杨晓青 张云聪

可思数据


网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片

Copyright©2005-2019 Sykv.com 可思数据 版权所有    网站地图   联系我们  

人工智能资讯   人工智能资讯   人工智能资讯   人工智能资讯

扫码入群
咨询反馈
扫码关注

微信公众号

返回顶部